R. T. M. NAGPUR UNIVERSITY, NAGPUR KAMLA NEHRU MAHAVIDYALAYA, NAGPUR

Department of Physics

B.Sc. SEM VI

Subject-Physics: Paper-II

QUESTION BANK

1.	A di	fferential amplifier		
	(a)	is a part of an Op-amp	(b)	has one input and one output
	(c)	has two outputs	(d)	answers (1) and (2)
2.	2. When a differential amplifier is operated single-ended			gle-ended
	(a)	the output is grounded	(b)	one input is grounded and signal is applied to the other
	(c)	both inputs are connected together	(d)	the output is not inverted
3.	With zero volts on both inputs, an OP-amp ideally should have an output			
	(a)	equal to the positive supply voltage	(b)	equal to the negative supply voltage
	(c)	equal to zero	(d)	equal to CMRR
4.	For an Op-amp with negative feedback, the output is			output is
	(a)	equal to the input	(b)	increased
	(c)	fed back to the inverting input	(d)	fed back to the non-inverting input
5.	Which of the following electrical characteristics is not exhibited by an ideal op amp?			
	(a)	Infinite voltage gain	(b)	Infinite bandwidth
	(c)	Infinite output resistance	(d)	Infinite slew rate

6.	Ideal op-amp has infinite voltage gain because			
	(a)	To control the output voltage	(b)	To obtain finite output voltage
	(c)	To receive zero noise output voltage	(d)	None of the mentioned
7.	In ai	n LC transistor oscillator, the active	e devi	ce is
	(a)	LC tank circuit	(b)	Biasing circuit
	(c)	Transistor	(d)	None of the above
8.	Hartley oscillator is commonly used in			
	(a)	Radio receivers	(b)	Radio transmitters
	(c)	TV receivers	(d)	None of the above
9.	In a phase shift oscillator, we use RC sections			RC sections
	(a)	Two	(b)	Three
	(c)	Four	(d)	None of the above
10.	A Wien bridge oscillator uses Feedback			
	(a)	Only positive	(b)	Only negative
	(c)	Both positive and negative	(d)	None of the above
11.	Mult	timode step index fibre has		
	(a)	Large core diameter & large numerical aperture	(b)	Large core diameter and small numerical aperture
	(c)	Small core diameter and large numerical aperture	(d)	Small core diameter & small numerical aperture
12.	Multimode graded index fibres use incoherent source only.			
	(a)	True	(b)	False
13.	What is the principle of fibre optical communication?			
	(a)	Frequency modulation	(b)	Population inversion
	(c)	Total internal reflection	(d)	Doppler Effect

14.	What is the other name for a maximum external incident angle?					
	(a)	Optical angle	(b)	Total internal reflection angle		
	(c)	Refraction angle	(d)	Wave guide acceptance angle		
15.	How	v does the refractive index vary in (Grade	d Index fibre?		
	(a)	Tangentially	(b)	Radially		
	(c)	Longitudinally	(d)	Transversely		
16.	Which of the following has more distortion?					
	(a)	Single step-index fibre	(b)	Graded index fibre		
	(c)	Multimode step-index fibre	(d)	Glass fibre		
17.	In si	ingle mode fibres, which is the mos	t bene	ficial index profile?		
	(a)	Step index	(b)	Graded index		
	(c)	Step and graded index	(d)	Coaxial cable		
18.	Multimode graded index fibres have overall buffer jackets same as multimode step index fibres but have core diameters					
	(a)	Larger than multimode step index fibres	(b)	Smaller than multimode step index fibres		
	(c)	Same as that of multimode step index fibres	(d)	Smaller than single mode step index fibres		
19.	In single-mode fibres, how does the fraction of energy traveling through bound mode appear in the cladding?					
	(a)	As a crescent wave	(b)	As a gibbous wave		
	(c)	As an evanescent wave	(d)	All of the above		
20.	In an optical fibre, the concept of Numerical aperture is applicable in describing the ability of					
	(a)	Light Collection	(b)	Light Scattering		
	(c)	Light Dispersion	(d)	Light Polarization		

	char mod	nges in accordance with the am ulating signal.	plitu	de and frequency variations of the		
	(a)	True	(b)	False		
22.	What is the reference line for the modulating signal?					
	(a)	Zero line	(b)	Carrier peak line		
	(c)	Modulated peak line	(d)	Un-modulated peak line		
23.	Wha amp	at happens when the amplitude of litude of the carrier?	' the	modulating signal is greater than the		
	(a)	Decay	(b)	Distortion		
	(c)	Amplification	(d)	Attenuation		
24.	Mod carr	lulation index of an AM signal is ier amplitude, Peak message signal	s rati amp	o of to thePeak litude		
	(a)	Peak message signal amplitude, Peak carrier amplitude	(b)	Carrier signal frequency, Message signal frequency		
	(c)	Message signal frequency, Carrier signal frequency	(d)	None of the above		
25.	The RF bandwidth of AM is the modulating message signal.			the maximum frequency contained in		
	(a)	Equal	(b)	Two times		
	(c)	Four times	(d)	Ten times		
26.	In F	requency Modulation –				
	(a)	Amplitude of the carrier remains same	(b)	Frequency of the carrier varies in accordance with the modulating signal		
	(c)	The number of side bands are infinite	(d)	All of the above		
27.	Carrier swing is defined as					
	(a)	The total variation in frequency from the lowest to the highest point	(b)	Frequency deviation above or below the carrier frequency		
	(c)	Width of the side band	(d)	None of the above		
28.	The amount of frequency deviation in FM signal depends on					
	(a)	Amplitude of the modulating signal	(b)	Carrier frequency		
	(c)	Modulating frequency	(d)	Transmitter amplifier		

21. In Amplitude Modulation, the instantaneous values of the carrier amplitude

29.	Adv	Advantage of using direct method for generation of FM signal is					
	(a)	It gives high stability to FM signal frequency	(b)	Distortion free FM signal is generated			
	(c)	High power FM generation is possible	(d)	None of the above			
30.	Sensitivity is defined as						
	(a)	Ability of receiver to amplify weak signals	(b)	Ability to reject unwanted signals			
	(c)	Ability to convert incoming signal into Image Frequency	(d)	Ability to reject noise			
31.	Any	Any signed negative binary number is recognised by its					
	(a)	MSB	(b)	LSB			
	(c)	Byte	(d)	Nibble			
32.	If the decimal number is a fraction then its binary equivalent is obtained by the number continuously by 2.						
	(a)	Dividing	(b)	Multiplying			
	(c)	Adding	(d)	Subtracting			
33.	The representation of octal number (532.2) ₈ in decimal is						
	(a)	$(346.25)_{10}$	(b)	(532.864)10			
	(c)	(340.67) ₁₀	(d)	(531.668) ₁₀			
34.	The	The decimal equivalent of the binary number (1011.011) ₂ is					
	(a)	$(11.375)_{10}$	(b)	$(10.123)_{10}$			
	(c)	$(11.175)_{10}$	(d)	(9.23) ₁₀			
35.	An important drawback of binary system is						
	(a)	It requires very large string of 1's and 0's to represent a decimal number	(b)	It requires sparingly small string of 1's and 0's to represent a decimal number			
	(c)	It requires large string of 1's and small string of 0's to represent a decimal number	(d)	It requires small string of 1's and large string of 0's to represent a decimal number			
36.	The	largest two digit hexadecimal num	ıber is	·			
	(a)	(FE) ₁₆	(b)	(FD) ₁₆			
	(c)	(FF) ₁₆	(d)	(EF) ₁₆			

- 37. How many AND gates are required to realize Y = CD + EF + G?
 - (a) 4 (b) 5
 - (c) 3 (d) 2

38. A universal logic gate is one which can be used to generate any logic function. Which of the following is a universal logic gate?

- (a) OR (b) AND
- (c) XOR (d) NAND

39. The gates required to build a half adder are _____

- (a) EX-OR gate and NOR gate (b) EX-OR gate and OR gate
- (c) EX-OR gate and AND gate (d) EX-NOR gate and AND gate

40. Logic Gates are the building blocks of all circuits in a computer

(a) True (b) False